Pythagorean Theorem

The area of the square on the hypotenuse of a right triangle is equal to the sum of the squares on the legs.

Important Note: The Pythagorean Theorem only applies to RIGHT triangles. There are some important terms we need to know first.

In the Pythagorean Theorem, a and b represent the legs and c represents the hypotenuse.

$$
l e g^{2}+l e g^{2}=\text { hypotenuse }{ }^{2}
$$

Using the Pythagorean Theorem to find distance: You can use the Pythagorean Theorem to find the distance between two points by making a right triangle.

To find the diagonal length in the picture:

1. Make a right triangle using the diagonal as the hypotenuse.
2. Count the vertical and horizontal distances.
3. Use the Pythagorean Theorem to solve for the missing piece. $a^{2}+b^{2}=\mathfrak{C}^{2}$
$3^{2}+5^{2}=C^{2}$
$9+25=$ e 2
$34=\mathrm{e}^{2}$
$\sqrt{34}=\mathbb{C}$

Using the Pythagorean Theorem to find missing side lengths of a right triangle.

$$
\begin{aligned}
6^{2}+8^{2} & =x^{2} \\
36+64 & =x^{2} \\
100 & =x^{2} \\
\sqrt{100} & =\sqrt{x^{2}} \\
x & =10
\end{aligned}
$$

13

$$
\begin{aligned}
12^{2}+y^{2} & =13^{2} \\
144+y^{2} & =169 \\
y^{2} & =25 \\
\sqrt{y^{2}} & =\sqrt{25} \\
y & =5
\end{aligned}
$$

