The Pythagorean Theorem is often used in word problems. One strategy for solving these is to draw a picture. Then figure out which pieces you have and which piece you are solving for. Example: The post in the picture at the right was broken in a recent storm The power company needs to know how tall the original post was in order to bring a new one. How tall was the post before it was broken?
In the pictures I notice the two given pecess are in different units. I need to first correct that. 2 feet is equad to 24 inches and since the other measurement is in inches, I will use that. Sos I have leg lengths of 24 inches (2 feet) and 18 inches I can pug these numbers into the Pythagorean Theorem to find the length of the
 nypotenuse.

$$
\begin{gathered}
\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2} \\
24^{2}+18^{2}=\mathrm{c}^{2} \\
576+324=\mathrm{c}^{2} \\
900=\mathrm{c}^{2}
\end{gathered}
$$

Now remember, c^{2} represents the area of the square on the side, so we have to take the square root to get the length of c. The square root of 900 is 30 , so the broken piece in the picture is 30 inches. We aren't done quite yet! They asked for us to find the length of the original pole. So, I need to add the length of the broken piece to the length of the piece still standing. The pole must have been $30+24=54$ inches.

The Converse of the Pythagorean Theorem

The Pythagorean Theorem says that for all right triangles, $a^{2}+b^{2}=c^{2}$. We can turn that around to say that IF $a^{2}+b^{2}=c^{2}$, you must have a right triangle. If you are given three lengths, you can test them to see if they form a right triangle.
can 6in, 8in, and 10in form a right triangle? first determine which length is the hypotenuse. Remember, it is the longest side. Then, plog in and see if your equation balances.

$$
a^{2}+b^{2}=c^{2}
$$

$$
6^{2}+8^{2}=10^{2}
$$

$$
36+64=100
$$

$$
100=100
$$

Right.
can $3 \mathrm{~cm}, 4 \mathrm{~cm}$, and 9 cm form a right triangle?
first defermine which length is the hypotenuse.
Remember, it is the longest side. Then, plog in and see if your equation balances.

$$
\begin{gathered}
a^{2}+b^{2}=c^{2} \\
3^{2}+4^{2}=9^{2} \\
9+16=81 \\
25 \neq 81
\end{gathered}
$$

Since the equation does not balance, this can't be a right triangle.

