	The Rube	Why it works	Example
	When MULTIPLYING with LIKE BASES, you keep the base and add the exponents	$x^{4} \cdot x^{2}=\underbrace{x \cdot x \cdot x \cdot x \cdot x \cdot x \cdot x}_{x^{4}} \underbrace{x}_{x^{2}}=x^{6}$	$x^{4+2}=x^{6}$
	When DIVIDING with LIKE BASES, you keep the base and SUBTRACT the exponents	$\frac{a^{6}}{a^{3}}=\frac{a \cdot a \cdot a \cdot a \cdot a \cdot a}{a \cdot a \cdot a}=\frac{a \cdot a \cdot a}{1}=a^{3}$	$a^{6-3}=a^{3}$
	When RAISING A POWER TO A POWER, you MULTIPLY the exponents	$\left(b^{2}\right)^{3}=(b \cdot b) \cdot(b \cdot b) \cdot(b \cdot b)=b^{6}$	$b^{2 \cdot 3}=b^{6}$
	When you have a NEGATIVE exponent, you make it a fraction, flip it, and make the exponent POSITIVE.	$\mathrm{C}^{-4}=\frac{1}{c^{4}}$	$\frac{a^{-2}}{b^{3}}=\frac{1}{a^{2} b^{3}}$
	When you have ZERO as an exponent, the answer is 1 ! ALWAYS	$a^{0}=1$	$7,201^{0}=1$

