es
RU
int
onc
dx
Ш

The Rule	Why it Works	Example
When MULTIPLYING with LIKE BASES, you keep the base and add the exponents	$x^{4} \cdot x^{2} = \underbrace{x \cdot x \cdot x \cdot x \cdot x \cdot x}_{4} \cdot x^{2} = x^{6}$	$x^{4+2} = x^6$
When DIVIDING with LIKE BASES, you keep the base and SUBTRACT the exponents	$\frac{a^6}{a^3} = \frac{a \cdot a \cdot a \cdot a \cdot a \cdot a \cdot a}{a \cdot a \cdot a} = \frac{a \cdot a \cdot a}{1} = a^3$	$a^{6-3}=a^3$
When RAISING A POWER TO A POWER, you MULTIPLY the exponents	$(b^2)^3 = (b \cdot b) \cdot (b \cdot b) \cdot (b \cdot b) = b^6$	b ^{2·3} =b ⁶
When you have a NEGATIVE exponent, you make it a fraction, flip it, and make the exponent POSITIVE.	$c^{-4} = \frac{1}{c^4}$	$\frac{a^{-2}}{b^3} = \frac{1}{a^2b^3}$
When you have ZERO as an exponent, the answer is 1! ALWAYS	$a^0 = 1$	7, 201 ⁰ = 1