Alternate Interior Angles	The pairs of angles located inside the parallel lines (interior) and on opposite sides (alternate) of the transversal. These angles are congruent.	$ \begin{array}{c} $
Alternate Exterior Angles	The pairs of angles located outside the parallel lines (exterior) and on opposite sides (alternate) of the transversal. These angles are congruent.	$\begin{array}{c} & 1 \\ & 1 \\ & 3 \\ \hline & 4 \\ & 4 \\ & 2 \end{array}$
Same Side Interior Angles	The pairs of angles located inside the parallel lines (interior) and on the same side of the transversal. These angles are supplementary (they have a sum of 180°).	$ \begin{array}{c} 7/6 \\ 8/5 \\ 1/4 \\ 2/3 \\ 6 \end{array} $
Same Side Exterior Angles	The pairs of angles located outside the parallel lines (exterior) and on the same side of the transversal. These angles are supplementary (they have a sum of 180°).	$\xrightarrow{1}^{1}$
Vertical Angles	These angles are opposite of each other in the same intersection. They share the same vertex. They are congruent.	$A \xrightarrow{a^{\circ}} b^{\circ} \xrightarrow{B} B$ $C \xrightarrow{a^{\circ}} b^{\circ} \xrightarrow{D} D$ $C \xrightarrow{b^{\circ}} a^{\circ}$
Corresponding Angles	These angles are in the same position in different intersections. If you translated one intersection to the other, the angles would correspond © They are congruent.	110°
Complementary Angles	These angles have a sum of 90°. They form a right angle.	58° 32°
Supplementary Angles	These angles have a sum of 180°. They form a straight line.	45' 135'