
What is the best approximation for $\sqrt{118}$?

- B. 10.7
- C. 10.9
- D. 10.8

Whick point best represents $\sqrt{55}$? Explain your answer.

- A. A because it is about halway between 7 and 8.
- B. B because it is a little less than 8.
- C. C because it is greater than 8.
- D. *D* because it is exactly 11.

Which of the following shows these numbers listed from LEAST to GREATEST?

A.
$$\sqrt{64}$$
, π , $\sqrt{8}$, 1.4, $\frac{1}{2}$

B.
$$\sqrt{64}$$
, $\sqrt{8}$, $\frac{1}{2}$, π , 1.4

C.
$$\frac{1}{2}$$
, $\sqrt{8}$, $\sqrt{64}$, 1.4, π

D.
$$\frac{1}{2}$$
, 1.4, $\sqrt{8}$, π , $\sqrt{64}$

Which range contains the value of $\sqrt{(16+9+20)}$?

- A. between 6 and 7
- B. between 7 and 8
- C. between 16 and 17
- D. between 22 and 23

One of Sierra's homework problems is to evaluate the expression shown below.

$$\sqrt{19} - 3$$

Part A

Anna knows $\sqrt{19}$ is irrational. Should she expect the expression $\sqrt{19}-3$ to be rational or irrational? Explain your answer.

Part B

Show a sequence of steps Anna could use to determine the two consecutive numbers, counting by tenths, that the value of $\sqrt{19}-3$ falls between. Show your work or explain your answer.

The figure below is a right triangle. Which is the best approximation of the hypotenuse of the right triangle? A. 1.21 B. 1.41 C. 1.73 D. 2.24	A coaster in the shape of a square covers an area of 36 square centimeters. What is the length of one side of the coaster? A. 3 centimeters B. 6 centimeters C. 12 centimeters D. 18 centimeters
Which is equivalent to $\sqrt[3]{216}$? A. 6 B. 8 C. 72 D. 108	Which of the following is 4.58 when approximated to the nearest hundredth? A. $\sqrt{20}$ B. $\sqrt{21}$ C. $\sqrt{22}$ D. $4\sqrt{58}$

In an art class, Jorge constructs a 2 feet by 4 feet rectangular frame for a painting he just finished. He uses the Pythagorean Theorem to find the diagonal of the frame, which is $\sqrt{20}$ feet. He then concludes that the diagonal must be at least 5 feet. Is he correct in his conclusion?

- A. Yes, because $2 + 4 \le 6$.
 - B. No, because $4^2 = 16$ and $5^2 = 25$, so $\sqrt{20}$ must be between 4 and 5.
- C. Yes, because $\sqrt{20} \approx 5.48$
- D. No, because $\sqrt{20} = 2^2 + 3^2$, so $\sqrt{20}$ must be between 2 and 3.

Omar has been practicing swimming in his public pool for a swimming race. The farthest he can swim without resting is the diagonal of the pool, which is $\sqrt{200}$ meters. The three races available are the 10-meter, the 15-meter, and the 20-meter swim.

Part A: Between which two races is the length of the pool diagonal that Omar can swim? Explain your reasoning.

Part B: In which race would Omar compete if he cannot rest during the race?

Part C: If, in the future, Omar can swim the length of a pool diagonal that measures $\sqrt{400}$ meters, what is the longest race he can swim without resting?