
limensional figures using coordinates
Rectangle A is dilated by a factor of 0.5 about the origin.
Part A: Create the new rectangle, rectangle B, on the coordinate plane.

Part B: Rectangle B is reflected across the y-axis to form rectangle C. Write the coordinates for rectangle C. How did they change?

Part C: Rectangle A is rotated 90 degrees counterclockwise about the origin to form rectangle D. Graph rectangle D.

Part D: Is rectangle A similar to rectangle D? Explain.
Triangle $A B C$ has vertices at $A(0,4), B(2,10)$, and $C(8,8)$ and is dilated by a scale factor of $1 / 4$, with the origin used as the center of dilation, to produce the image $A^{\prime} B^{\prime} C^{\prime}$. What are the coordinates of the vertices of the dilated image $A^{\prime} B^{\prime} C^{\prime}$?
A. $A^{\prime}(0,1), B^{\prime}(0.5,2), C^{\prime}(4,4)$
B. $\mathrm{A}^{\prime}(0,1), \mathrm{B}^{\prime}(0.5,2.5), \mathrm{C}^{\prime}(2,2)$
C. $A^{\prime}(1,1), B^{\prime}(2,2), C^{\prime}(4,4)$
D. $A^{\prime}(1,0), B^{\prime}(2.5,2.5), C^{\prime}(2,2)$
Quadrilateral $A B C D$ will be dilated with a scale factor of $1 / 2$. Which of the following will not be a vertex of the image, quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$?

Triangle PQR has vertices $\mathrm{P}(2,1), \mathrm{Q}(3,-1), \mathrm{R}(1,0)$. It is rotated 180° clockwise about the origin. Which set of coordinates represents triangle P'Q'R'?
(A.) $P^{\prime}(-1,2), Q^{\prime}(1,3), R^{\prime}(0,1)$
(B.) $P^{\prime}(-2,-1), Q^{\prime}(-3,1), R^{\prime}(-1,0)$
(C.) $P^{\prime}(1,-2), Q^{\prime}(-1,-3), R^{\prime}(0,-1)$
(D.) $P^{\prime}(2,1), Q^{\prime}(3,-1), R^{\prime}(1,0)$
Triangle QRS is drawn on a coordinate grid where $Q(-3,2), R(6,1)$, and $S(3,-4)$.
Michelle draws its image, $\Delta Q^{\prime} R^{\prime} S^{\prime}$, on the same coordinate grid using the translation rule $(x, y) \rightarrow(x-6, y+1)$. What are the coordinates of $\Delta Q^{\prime} R^{\prime} S^{\prime}$?
R \qquad
R^{\prime}
S'

The diagram below shows the location of $\overline{E F}$ on a coordinate plane. Suppose that $\overline{E F}$ is rotated 180° about the origin.

What are the coordinates of the image of point E ?
(A.) $(-2,-4)$
(B.) $(-4,-2)$
(C.) $(4,-2)$
(D.) $(-4,2)$

