

	Which table represents a linear function? A. x y B.	x y
	$ \begin{array}{c ccc} -4 & 8 \\ \hline -2 & 0 \\ \hline 0 & -4 \\ \hline 2 & -6 \\ \end{array} $	$ \begin{array}{c ccc} -4 & 2 \\ -2 & 0 \\ 0 & 2 \\ 2 & 4 \end{array} $
tions that are not linear.	C. $\begin{array}{c ccc} x & y \\ \hline -4 & 2 \\ \hline -2 & 0 \\ \hline 0 & -4 \\ \hline 0 & -2 \end{array}$ D.	x y -4 4 -2 2 0 0 2 -2
	Parker states that any function written without exponents must be linear. Which function proves Parker's statement is incorrect? A. $y = 5x + 3$	
	B . $y = x^5 + 3$	
	C. $y = \frac{x}{3} + 5$	
	Which equation represents the line that crosses through points A and B on the graph below?	Which equation represents the function shown in the table below?
		x2468101214y381318232833
	-8-7-6-5-4-3-2-1 -2 -3 -3 -4 -4 -3 -4 -4 -5 -6 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	A. $y = 2/5x - 2$ B. $y = -2/5x+2$
es of func	A. $y = -\frac{4}{3}x$ B. $y = -\frac{3}{4}x$	D. $y = 3/2x + 2$
example	C. $y = \frac{3}{4}x$ D. $y = \frac{4}{3}x$	

8.F.3 Interpret the equation y=mx+b as defining a linear function, whose graph is a straight line; give