$\begin{aligned} & 0 \\ & \underset{\sim}{0} \\ & \stackrel{1}{U} \\ & \dot{U} \\ & 0 \\ & 0 \end{aligned}$	The Rule	Why it Works	Example
	When MULTIPLYING with LIKE BASES, you keep the base and add the exponents	$x^{4} \cdot x^{2}=\underbrace{x \cdot x \cdot x \cdot x \cdot x \cdot x}_{x^{4} \cdot x^{2}=x^{6}}=\underbrace{6}$	$x^{4+2}=x^{6}$
	When DIVIDING with LIKE BASES, you keep the base and SUBTRACT the exponents	$\frac{a^{6}}{a^{3}}=\frac{a \cdot a \cdot a \cdot a \cdot a \cdot a}{a \cdot c \cdot a}=\frac{a \cdot a \cdot a}{1}=a^{3}$	$a^{6-3}=a^{3}$
	When RAISING A POWER TO A POWER, you MULTIPLY the exponents	$\left(b^{2}\right)^{3}=(b \cdot b) \cdot(b \cdot b) \cdot(b \cdot b)=b^{6}$	$b^{2 \cdot 3}=b^{6}$
	When you have a NEGATIVE exponent, you make it a fraction, flip it, and make the exponent POSITIVE.	$\mathrm{c}^{-4}=\frac{1}{c^{4}}$	$\frac{a^{-2}}{b^{3}}=\frac{1}{a^{2} b^{3}}$
	When you have ZERO as an exponent, the answer is 1 ! ALWAYS	$a^{0}=1$	$7,201^{0}=1$
	Reminder	When it doubt, wri	out ${ }^{\text {P }}$

