nents to generate equivalent	Which expression equals $\left(4 x y^{2} z^{3}\right)^{2}$? A) $4 x^{2} y^{4} z^{6}$ B) $8 x^{2} y^{4} z^{6}$ C) $16 x^{2} y^{4} z^{6}$ D) $16 x^{3} y^{4} z^{5}$	Which expression is equivalent to $6^{5} \cdot 6^{-5} \cdot\left(\frac{4^{9}}{4^{7}}\right)^{-3}$? A) $\frac{1}{4}$ B) $\frac{1}{4^{6}}$ C) $\frac{6}{4^{20}}$ D) $\frac{6}{4^{34}}$
	What is another way to express 4^{2} ? A) $\frac{1}{16}$ B) $\frac{16}{4}$ C) $\frac{8}{1}$ D) $\frac{32}{2}$	Jordan drove a^{3} miles per hour for a^{5} hours. How far did Jordan drive? A) a^{2} miles B) a^{8} miles C) a^{12} miles D) a^{15} miles

A warehouse stores goods in cube-shaped boxes, each with a volume of x^{3} cubic feet.
Part A
If the volume of a single box is 216 cubic centimeters, what is the value of x ? Explain your answer.

Part B
In one room, the boxes are arranged together to form a rectangular solid measuring $\mathbf{2 x}$ feet high, $\mathbf{5 x}$ feet long, and $6 \mathbf{x}$ feet wide. If each box has a volume of x^{3} cubic feet, how many boxes are arranged together in this room? Explain your answer.

Part C
In a second room, boxes are arranged together in a straight line of length $\mathbf{3 x}$. What is the total volume of all the boxes in the second room in terms of x ? Explain your answer.

generate equivalent	Which term is equivalent to $\frac{2^{-3}}{2^{2}}$? A. $\frac{1}{32}$ B. $\frac{1}{8}$ C. $\frac{1}{2}$ D. 2	Which expressions are equivalent to $\frac{3^{-8}}{3^{-4}}$? Select all that apply. A. 3^{-12} B. 3^{-4} C. 3^{2} D. $\frac{1}{3^{2}}$ E. $\frac{1}{3^{4}}$ F. $\frac{1}{3^{12}}$
	Which expression is equivalent to -16? A. -8^{2} B. -4^{2} C. 4^{-2} D. -16^{0}	Which expressions are equivalent to $\frac{1}{36}$? Select all that apply. A. 6^{-2} B. $6^{-4} \times 6^{3}$ C. $6^{10} \times 6^{-8}$ D. $6^{8} \times 6^{-3}$ E. $6^{-10} \times 6^{8}$
0 0 + \pm 0 0 0	Simplify $3^{5} \cdot 3^{3} \cdot 3^{2}$ using positive exponents. A. 3^{10} B. 27^{10} C. 3^{30} D. 27^{30}	Simplify the expression: $\left(5 y^{4}\right)^{2}$ A. $25 y^{6}$ B. $25 y^{8}$ C. $5 y^{6}$ D. $5 y^{8}$
$\begin{aligned} & \frac{0}{0} \\ & \frac{1}{A} \\ & \frac{1}{1} \\ & \frac{\lambda}{\sim} \\ & \frac{\lambda}{0} \end{aligned}$	Simplify the expression: $\frac{v^{2}}{v^{6}}$ A. $\frac{v^{2}}{v^{4}}$ B. $\frac{v}{v^{12}}$ C. $\frac{1}{v^{4}}$ D. v^{4}	Simplify $\frac{1}{2^{-3}}$. A. 8 B. 6 C. $\frac{1}{6}$ D. $\frac{1}{8}$
	Simplify the expression: $4 x^{-2} \cdot 2 x^{3}$ A. $8 x$ B. $6 x^{-5}$ C. $8 x^{-6}$ D. $6 x$	Simplify: $\frac{x^{10}}{8 x^{5}}$ A. $\frac{x^{5}}{8}$ B. $\frac{1}{8 x^{5}}$ C. $8 x^{5}$ D. $\frac{8}{x^{5}}$

